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Abstract 
We present a technique for determining non-linear resistances, capacitances, 
and inductances from ring down data in a non-linear RLC circuit. Although the 
governing differential equations are non-linear, we are able to solve this problem 
using linear least squares without doing any sort of non-linear iteration. 
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1 Introduction 
In this paper we present a technique for determining the parameters in a non- 
linear RLC circuit from ring down data. We begin by defining precisely what 
we mean by a ring down experiment. We suppose that we have charged up a 
capacitor to a voltage VO, and that at time t = 0 a switch is closed so that the 
capacitor discharges through an RLC circuit. We measure the current I ( t )  from 
t = 0 to a time T that may or may not be large enough for the capacitor to 
discharge completely. 

The charge on the capacitor is given by 

Requiring that the voltage drop accross the loop vanishes implies that [l], [2] 

d Q 
- ( L ( I ) I )  + R ( I ) I  = - 

C ( Q )  dt 

Here L ( I ) ,  R ( I ) ,  and C(Q)  are the nonlinear inductance, resistance, and ca- 
pacitance. Using the relation % = - I ( t )  we get the second order differential 
equations 

d Q 
dt C ( Q )  - O  
- ( L ( I ) I )  + R(I)Q + - - 

where 
I = - Q  (1b) 

Q(0) = Qo (IC) 

Q(0) = 0 (14 
Note that the charge QO is not given as data in our ring down experiment, 

but must be determined as part of our fitting algorithm. The purpose of this 
paper is to present a technique for determining the functions L ( I ) ,  R ( I ) ,  and 
C(Q)  from a knowledge of the current I ( t )  in this ring down experiment. 

At first sight this appears to be a nonlinear curve fitting problem. However, 
we will show that by choosing the right optimization problem, we can estimate 
the nonlinear circuit parameters using linear least squares. 

We will briefly summarize the conclusions of this work. 

When there is no noise present our technique allows us to accurately pre- 
dict arbitrarily complicated functions I ,  L ( I ) ,  and C(Q)  from ring down 
data. 

In the presence of noise it becomes difficult to predict complicated func- 
tions, but we can predict general trends in these functions correctly. 
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We now give an outline of the rest of this paper. In section 2) we discuss the 
technique for determining the circuit parameters in a linear RLC circuit. We 
present this analysis separately since it illustrates the technique without getting 
into some of the technical difficulties associated with the non-linear RLC curve 
fitting problem. In section 3) we discuss a few of the numerical details associated 
with this algorithm. In section 4) we generalize this technique to non-linear RLC 
circuits. We give numerical examples in section 5) and conclusions in section 
6 ) .  

2 Determining the Parameters in a Linear RLC 
Circuit 

In this section we present the technique for the particular case of determining 
the parameters of a linear RLC circuit from ring down data. The charge Q(t)  
in a linear RLC circuit [3] satisfies 

LQ+RQ+Q/C=O for O < t < T  

along with the initial conditions 

Q(0) = VoC 

Q(0) = 0 

We assume that we know the initial voltage VO, and that we have experimen- 
tal data Ie( t )  that we would like to fit. Given the circuit parameters R, L and 
C ,  we can determine the current Imodel(R, L, C, t )  by analytically or numerically 
integrating the differential equations. If we try to minimize the error 

I  model(^ L, C, t )  - Ie(t> 12 dt 

we get a nonlinear least squares problem. We emphasize that this particular 
minimizatin problem gives a nonlinear least squares problem even for the case 
of linear circuit elements. 

However, we now show how we can estimate the parameters R, L,and C 
using linear least squares. In order to do this we first write 

t 

Q*(t) = - 1 I(s)ds = Q(t)  - QO (2) 
0 

Here QO is the initial charge on the capacitor. If our ring down data includes 
enough data so that the capacitor has completely discharged, we can compute 
QO using 
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This implies that 

Qo = I" Ie( t )d t  (3) 

If we assume that we can calculate QO in this way, it simplifies our curve 

The function Q*(t) satisfies the equation 
fitting problem; however, we will not make this assumption in our algorithm. 

LQ*(t) + RQ*(t) + Q*/C = -Vo 

In order to estimate R, L and C we assume that we have smoothed the data 
so that we have an analytical expression I f i t ( t )  that approximates the data. 
This allows us to get analytical expressions for Q* and its derivatives. 

Assuming that we have fit the data Q*(t), Q*(t), and Q*(t), we now solve 
the overdetermined linear system 

L$*(tj) + RQ*(tj) + Q*(tj)/C = -vo j = 0,Ndat (4) 
Here Ndat is the number of data points that we choose to impose the equation at. 
This gives us Ndat linear equations in three unknowns R, L, and C. In general 
Ndat will be much larger than 3, so we will have a highly overdetermined linear 
system of equations. We solve these equations in a least squares sense to get 
R, L and C. We emphasize that this fit does not minimize the mean square 
error between Imodel(R, L, C, t )  and I j i t ( t ) ,  but instead minimizes the error in 
the differential equation. This simple change in the procedure has resulted in 
turning a nonlinear least squares problem into a linear one. 

There are three basic steps in our procedure for dtermining R, L, and C. 

0 Get an analytical fit I f i t ( t )  to the experimentally measured current Ie( t ) .  

0 Process I f i t ( t )  to get the functions a*, ()*,and Q* 

0 Given VO, and the function Q*(t) and its first two derivatives, solve the 
overdetermined set of linear equations in 4). 

We illustrate our algorithm on a linear numerically generated example with 
L = -1, R = .2, and C = 1.. Figure la) shows some ring down data generated 
with these parameters. When we apply our algorithmn to this data we get back 
exactly the values for the RLC parameters that were used in generating the 
data. In order to get some feel for the performance of the algorithm in the 
presence of noise, we have added random noise to the data as in figure lb) ( 2.5 
percent of the peak value ). Although this type of high frequency random noise 
is not necessarily characteristic of the noise present in real ring down data, we 
see that after smoothing this data we get some data as in figure IC) that has 
low frequency noise on it. When we fit this smoothed data we get values of 
R = .177, L = .0975, and C = 1.152. These are fairly reasonable values of the 
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parameters considering the level of noise that has been added to the data. In 
figure Id) we see the current generated by these values of the RLC parameters. 
We see that there is quite significant error in the current generated by these 
parameters, eventhough the parameters themselves are quite good. We believe 
that this example shows that the algorithm works quite well for linear circuits 
even in the presence of noise. 

3 Some Details of Implementation 
In principle the procedure we outlined in the last section is quite simple. How- 
ever, if the algorithhm is implemented too crudely, it can result in some serious 
numerical difficulties 

The first detail involves the scaling of the data. Typically our experimental 
data l e ( t )  is expressed in terms of seconds. If the time scale for discharging 
the circuit is very small (or large) when expressed in terms of seconds, this will 
result in the overdetermined system of equations in 4) having a large condition 
number. This can lead to large roundoff errors when doing the computations, 
and will result in good software packages giving error messages. This can be 
avoided by merely redefining the unit of time. When we redefine the unit of 
time, we end up changing the units of the R, L ,  and C. We suggest that the 
calculations be carried out using scaled versions of t ,  R, L ,  and C, and then 
converting the final answers back to the unscaled form. We now illustrate the 
process of scaling the data. 

Suppose that we introduce a characteristic time scale T*. This does not 
have to be chosen precisely, it is just a unit of time other than seconds that 
we would like to express our times in. We could for example choose T* to be 
one millisecond, or a microsecond, or the approximate time for the capacitor to 
discharge. We now introduce the scaled time s defined by 

s = t/T* 

In terms of s we have the scaled current 

and the scaled charge 

Q s c a l e d ( S )  = - / ‘ I s c a l e d ( Z ) d Z  + QO 
0 

We also have the scaled resistance, inductance, and capacitance 
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Figure 1: This is an example generated with linear circuit parameters. Figure 
a) shows numerically generated ring down data generated using L = -1, R = .2, 
and C = 1.. Figure b) shows this same data with noise added to it (2.5 percent 
of the peak value). Figure c) shows our smoothed fit to the noisy data compared 
to the original data. Figure d) shows the output generated using the RLC values 
predicted by our code. 
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Cscaled = C/T* 
The equations in terms of the scaled variables can be written as 

In other words, the scaled system satisfies the same equations as the unscaled 
system, but using scaled values of time, charge, and the circuit parameters. 

We have succesfully gotten by without scalng our data even for circuits that 
discharge on the order of seconds. However, if you do not scale your data, 
you are risking pushing the limits of whatever software you are using to solve 
the least squares systems. Throughout the rest of this paper we assume that 
we are dealing with data that has already been scaled. 

The other issue of implementation we would like to address is the method 
for determining an analytical fit I f i t ( t )  to the data, and how to obtain the 
derivatives and integrals of this function. We suppose that the experimental 
data exists from t = 0 to t = T .  In order to fit the experimental data we 
assume that the current can be expanded in terms of Tchebychev polynomials 
Tk(5). Tchebychev polynomials are a robust way of approximating functions 
on the interval ( -1 , l ) .  Since we are interested in the interval (O,T), we must 
use shifted and scaled versions of the Tchebychev polynomials. In particular, 
we define 

T;(t) = Tk(2t/T - 1 )  

The functions T; are defined on the interval (0, T ) ,  and are expressed in terms 
of our analytical fit to the experimental data can be written as 

k=O 
We determine the coefficients Ck by solving the overdetermined system of 

equations 

where tj are the values o f t  where we have sampled our data, and Ndat is the 
number of data points. Assuming we have more data points than coefficients 
ck, this is an overdetermined system of h e a r  equations for the unknowns ck. 
When the data is noisy, our function I f i t ( t )  will also smooth the data assuming 
that Ndat is not too large. 

Once we have determined the coefficients C k ,  we can compute the derivatives 
and indefinite integrals of I f i t  ( t )  using simple recursions formulas derived from 
the properties of Tchebychev polynomials. We discuss these formulas in the 
appendix. 

I f i t ( t j )  = le( t j )  j = 1,Ndat 
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4 Nonlinear RLC Circuits 
We now show how to generalize the procedure outlined in section 2) so that we 
can determine the functions R(I ) ,  L ( I ) ,  and C(Q) in a nonlinear RLC circuit. 

As with the linear case we assume that we can smooth the data I e ( t ) ,  and 
differentiate and integrate it to get functions o*(t), &*(t), and Q*(t), where 
Q*(t) is defined in eqn. 2). 

In the nonlinear case we assume that the resistances, inductances, and volt- 
age drop across the capacitor can be written as 

k=O 

NL--1 

k=O 

Rather than defining the capacitance C(Q),  we are using the function Vc(Q) 
that gives the voltage drop across the capacitor, 

and then defining Vc(Q) using the functions F(Q*). 

In eqns. 5 )  + k ( I )  and @k(Q*)  are some complete set of basis functions that 
allow us to approximate the nonlinear elements. For example we could choose 
& ( I )  = Ik. Or if we want to require that the resistance is an even function of 
the current we could choose +k ( I )  = 12k. If we want to approximate complicated 
functions that require large values of NR, N L ,  or Nc, it would be preferable to 
let the functions @ k ( I )  and @ k ( Q * )  be orthogonal polynomials. However, the 
procedure we will now outline is the same no matter what set of basis functions 
4k and $k we use. 

We now show how to extend the analysis in the previous section to determine 
the coefficients T k ,  l k ,  and f k ,  by solvng an overdetermined system of linnear 
equations. 

The governing equations for a nonlinear RLC circuit are given by 

( L ( I )  + 1%) Qi + R(I)Q + Vc(Q) = 0 

We also assume the initial conditions where 
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Vc(Q(0)) = VO 

and 
Q(0) = 0 

As with the linear circuit, we introduce 

where QO is the initial charge on the capacitor, which needs to be solved for 
In terms of the function Q* we can write 

Q*(t) + R(I)Q*(t)  + F(Q*) = 0 

where 
I = Q*(t) 

F(Q*) = K(Q* + Q o )  
The condition that VC(Qo) = VO can be written as . 

F(0)  = vo (8) 
If we know the coefficients f k ,  k = 1 ,  N c -  1, equation 8) allows us to solve for 

fo. We want to rewrite the differential equations so they take into account the 
condition 8) , and do not involve the coefficient fo. To do this we can subtract 
equation 8) from our governing differential equations we get the equation 

L ( I )  + I -  Q*(t) + R ( I ) Q * ( t )  + F(Q*) - F(0)  = -Vo (9) ( :) 
Assuming that &(Q*) = 1, equation 9) does not involve fo. If we know the 

coefficients f k ,  IC = 1, NC - 1 we can solve for fo using equation 8). 
As with the linear case, we assume that we have smoothed our data and 

found analytical approximations to the data that give functions Q*(t), &*(t), 
and Q*(t). If we require that equation 9 holds at all of the data points we end 
up with the overdetermined system of equations 

where 

11 



Q; = Q*(t j )  

Q; = Q*(t j )  
This gives us an overdetermined system of linear equations for the coefficients 

T k , k  = O,NR - 1; l k , k  = O,NL - 1; and f k , k  = 1 , N c  - 1. We solve this 
equation in a least squares sense in order to find the coefficients T k ,  l k ,  and f k .  

We emphasize that fo does not appear in these equations. Once we know f k  for 
k > 0, we solve for fo using 

This now uniquely determines fo,  and hence the function F(Q*). The function 
F(Q*) allows us to determine the functions Vc(Q) if we know the value of Qo. 

Assuming that we cannot use formula 3) to determine Qo, we will now discuss 
how to determine the value of Qo. To do this we note that when the charge is 
zero we have Vc(0) = 0, and hence 

F(0)  = vo. 

F(-Qo) = 0. 

It follows that we can find QO by locating the zeros of the function F(Q*).  
In principle this could be done by plotting the function, and visually noting 
where the function crosses zero. If the function has more than one zero, then 
we must decide which of these to choose. The fact that the capacitance is 
positive implies that physical roots to F(-Qo) = 0 must have F’(-Qo) > 0. 
This eliminates some of the roots. We have never had any problems selecting 
the correct value of the root. If our ring down experiment is somewhat close to 
completely discharging the capacitor, we can choose the root that is closest to 
the value of QO predicted by 3). 

Typically we choose the basis functions $ k ( q * )  to be polynomials. In this 
case we can determine the roots of F(-Qo) by finding the roots of polynomi- 
als. Typically this is done by finding the eigenvalues of the companion matrix 
associated with that polynomial.. In general this procedure will give multiple 
roots that we need to choose from. We select these roots as described in the last 
paragraph. Once we have determined Qo, we use equation 7) to determine the 
voltage drop Vc(Q) across the capaictor. We then determine the capacitance 
C ( Q )  using 

We now briefly outline the algorithm for determining the functions R(I) ,  
L ( I ) ,  and C(Q) in a nonlinear RLC circuit. We describe the algorithm assuming 
that we have already scaled our data as described in section 3). 

0 Find a curve fit I f i t ( t )  that approximates the experimental data Ie( t ) .  

0 Integrate and differentiate this data to get the function Q*(t) and its first 
two derivatives. 
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0 Choose a set of basis functions & ( I )  to approximate the resistances and 
inductances. Also choose a set @ k ( Q * )  to approximate the function F(Q*). 

0 Choose the number of functions NR, N L ,  and Nc that we will use to 
approximate R ( I ) ,  L ( I ) ,  and F(Q*). 

0 Solve the overdetermined set of equations 10) to determine the parameters 
r k ,  k = 1, NR - 1; lk, k = 0, N t  - 1; and .fk, IC = 1, N c  - 1. 

0 Use the equation 8) to determine the parameter fo. 

0 Solve the equation F(-Qo) = 0 to determine the value of Qo, and hence 
determine the function Vc(Q) using 7) . 

0 Solve for C(Q) using 6 ) .  

5 Some Non-linear Examples from Numerically 
Generated Data 

It is risky to draw general conclusions from a small number of examples. Never 
the less, we will present a few examples that illustrate the performance of this 
algorithm on some test problems. 

5.1 Non-linear L 
In this example we keep R and C constant, but let L vary. In particular we set 
R = .2, C = l., and 

L ( I )  = .le12 

We use the initial condition Q(0) = 1, and integrate these equations from t = 0 
to t = 5. 

In the examples that we give we have generated data by solving the governing 
differential equations numerically with these values of R, L and C. 

Figures 2a) shows the predicted function L ( I )  that we get when we use our 
algorithm assuming that L ( I )  is a linear function of 12. Figure 2b) shows the 
current produced by our function L ( I )  compared to the true current. Figure 
3) shows the same example but where we have used a quadratic function of I 2  
for L ( I ) .  If we use higher order polynomials to approximate L ( I )  we get even 
better results. 

We now add some random noise to our numerically generated data. Figure 
4a) shows the noisy data, and figure 4b) shows how our fit to this noisy data 
agrees with the exact solution. Once again we note that true ring down data 
might not have this high frequency noise that we have used, but the fitted data 
has gotten rid of this high frequency noise, and replace it with low frequency 
noise. Figure 5) shows the predicted values of L ( I )  and I ( T )  using our algorithm 
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( with L ( I )  a quadratic function of 12) on the fit to the noisy data. Figure 6) 
shows our algorithm on this same data but where we have assumed that L ( I )  is 
a fifth order polynomial in 12. This does not give any better results than when 
we assumed a quadratic polynomial, but it is encouraging that we do not get 
worse results either. 

On this particular problem the algorithm seems to give quite reasonable 
results even in the presence of noise. 

0.351 03 \ 
d 

0 2 -  

I 
-1.5 I -0.5 0 0 5  1 

0.05 1 , -  I I , ,  , * ' I  
'0 0.5 1 1.5 2 2.5 3 3.5 6 4 5 5 

Figure 2: This is an example with L ( I )  = .le1*, R = .2, and C = 1.. We are 
fitting the data with R and C constant, and with L a linear function of 12. a) 
The agreement between the exact function L ( I )  and the fitted function Lrit(I). 
b) The agreement between the exact current I @ ) ,  and the current generated by 
the fitted function Lf i t ( I ) .  

5.2 Trying to Fit a Current Distribution Not Produced 
by an RLC Circuit 

We now ask the question; is it possible to find functions L ( I ) ,  R ( I ) ,  and C(Q) 
that fit any current distribution I ( t )  that we specify; even if I ( t )  was not gen- 
erated by an RLC circuit ? It appears that this might be possible since we 
have infinitely many degrees of freedom in specifying these functions. We will 
now give an example that shows that it is not possible to fit totally arbitrary 
functions I ( t ) .  

In this example we will assume that we are give in R and C as positive 
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Figure 3: This is the same example as in figure 1) except we have used a 
quadratic polynomial in I 2  to fit L ( I ) .  

Figure 4: a) The exact current data for figure 1) with random noise added. b) 
The fit to the noisy data compared to the exact data. 
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dL 
dI G ( I )  = L ( I )  + I -  

Our governing differential equation can be written as 

G(I)Q + RQ + &IC = o 
If we could find a function G ( I )  that fit the data t2 - t3 ,  then evaluating the 
equation at t = 0 shows that G(0) > 0, and Q(0) = 0. Taking the derivative of 
our differential equation and evaluating the result at t = 0, we see that 

G(O)f + G'(0)12 + RI = 0 
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Figure 5: This is the same example as in figures 1) and 2) except we have added 
noise to the current befor we fit it. We are using a quadratic polynomial in L 
to fit the data. 

constants, and that we are trying to find a function L ( I )  that will fit the ring 
down data I ( t )  = t2 - t3 .  This is not precisely the problem we have been talking 
about, since R and C are specified, but we could modify our procedure to handle 
this situation. We will prove that it is impossible to find a function L ( I )  that 
fits this data. This shows that the arguement that we can fit any data because 
we have infinitely many degrees of freedom is not correct. We will then present 
numerical evidence that shows that we cannot fit this current distribution even 
when we let R and C vary. 

We begin by defining the function 

e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
a 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 



e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

0.4 

035- 

03- 

0.25 t 

0.2 - 

O.15L 

0 , -  

I 
- I  5 1 -0 5 0 0 5  1 

005l 

Figure 6: This is the same example as in figure 4) except we have used a fifth 
order polynomial in I 2  to fit L ( I ) .  Due to the noise we have added onto the 
data, the results are no better than in figure 4). However, it is encouraging that 
the results are not worse either. 

17 



Since i ' (I)  > 0, we see that we must have 

G'(0) < 0 

We now consider the situation at t = 1. We have 1(1) = 0, and i(1) < 0, 
and i'( 1) < 0. If we once again take the derivative of the governing differential 
equation and evaluate it at t - 1, we get 

G(O)i'(l) = -RI(1) - G'(0)i(l)2 

Since we know that G'(0) < 0, this implies that we must have i'(1) > 0. How- 
ever, this contradicts the fact that the function t2 - t3 has a negative second 
derivative at t = 1. It follows that it is not possible to find any function G(I)  
that fits this current distribution. 

Figure 7) shows an attempt to fit this current distribution where we assume 
that R and C are unspecified constants, and that L is an arbitrary function. No 
matter how many terms we take in our expansion of L(I) ,  we do not get any 
improvement in our results. Similar reults hold even when we let R and C be 
more complicated functions. 

5.3 Non-Linear R 
We now give an example where the inductance and capacitance are constant, 
but the function R(I )  depends on I .  In particular, we choose L = .l, C = l . ,  
and 

R(I) = .2/(1+ P / 2 )  

Once again we generate our data by numerically integrating the governing 
differential equations on the interval from t = 0 to t = 5. 

Figures 8) , and 9) and 10) show the performance of our algorithm when 
there is no noise present. We are fitting L annd C assuming that thery are 
contants, and we use linear, quadratic, and quintic polynomials in I2 for the 
function R(I).  We get progressively better agreement as we approximate R(I)  
with more powers of 12. When we use a quintic polynomial in I2 we are getting 
nearly perfect agreement both with our prediction for the function R(I) ,  and 
with our prediction of the current (using our predicted value of R(I).  

In order to test the algorithm with noise present we have added ten precent 
random noise to the data. Figure lla) shows the noisy data, and figure l l b )  
shows the fit to the noisy data compared to the exact data. Figures 12) and 13) 
show the performance of our algorithm when we try to fit the smoothed data. 
The functions R(I)  that we obtain in this way are in fairly good agreement with 
the true values of R(I),  but they clearly have some features that are artifacts. 
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Figure 7: This shows an attempt to fit a current distribution that was not 
derived from the output of an RLC circuit. The current is I ( t )  = t2 - t3 .  We 
are tryng to fit this function using a nonlinear L,  and constant values for R and 
C. No matter how many terms in our expansion for L ( I )  we choose, we cannot 
find a function L ( I )  that fits the current distribution . a) Using a constant value 
of L. b) using a quadratic function of I2  . c) Using a tenth order polynomial in 
I 2  for L ( I ) .  
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Figure 8: This is an example with L = .l, C = l., and R = . 2 / ( 1 + 1 2 / 2 ) .  We are 
fitting the data with L and C constant, and with R a linear function of 12. a) 
The agreement between the exact function L ( I )  and the fitted function Lfi t  (I). 
b) The agreement between the exact current I ( t ) ,  and the current generated by 
the fitted function Lfi t ( I ) .  
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Figure 9: This is the same example as in figure 8) except we have used a 
quadratic polynomial in I 2  to fit R(1). 
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Figure 10: This is the same example as in figure 8) except we have used a quintic 
polynomial in I 2  to  fit R(1). 
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Figure 11: a) The exact current data for figure 8) with random noise added. b) 
The fit to the noisy data compared to the exact data. 

Figure 12: This is the same example as in figures 8) ,9) and 10) except we have 
added noise to the current befor we fit it. We are using a quadratic polynomial 
in R to fit the data. 
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Figure 13: This is the same example as in figure 12) except we have used a fifth 
order polynomial in I 2  to fit R(1). 

5.4 Non-Linear C 
We now give an example where we have R and L constant, but have C vary 
with Q. In particular, we set L = .l, R = .2, and 

We generate the data by numerically integrating the governing differential equa- 
tions with the initial condiion Q(0) = l, and Q ( 0 )  = 0. We give the data on the 
interval t = 0 to t = 5 . .  

Note that eventhough C is an even function of Q,  our algorithm does not 
allow us to take this symmetry into account. 

Figures 14) and 15) show how our algorithm works without any noise present. 
We assume that R and L are constants, and we fit F(Q*) using a cubic and a 
quintic polynomial. The cubic polynomial already gives quite good results, and 
the qunitic polynomial gives excellent agreement both for the function C (  Q ) ,  
and for the current distribution predicted by this function. 

We now consider the algorithm with some noise present. Figure 16a) shows 
the result of adding 10 percent random noise to the exact current distribution. 
Figure 16b) shows our smoothed fit to the noisy data, and how it compares 
to the exact current distribution. Figures 17) and 18) show the performance 
of our algorithm on this smoothed data. Here we are using cubic and quintic 
approximations to the function F(Q*). The noise has added some significant 
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distortion to the profile for C(Q). In figures 17c) and 18c) we show how the 
voltage drop Q/C(Q) across the capacitor compares to the exact value. We see 
that we have done a better job of fitting this function. However, our predicted 
value of the current also seems to be more sensitive to the noise than it was in 
the cases when L and R were nonlinear. 

105 

_ - - _  
1 , '..----. ' 

0.95- // 

0.0 - 1 q 0.8 

0 7 4  

0 65 

0 6  
-0.6 -01 -0.2 0 0 2  0 4  0 6  0.8 t 1.2 

Figure 14: This is an example with C(Q) = e-Q2I2, R = -2, and L = . l .  We 
are fitting the data with R and L constant, and with F(Q*) a cubic function of 
Q*. a) The agreement between the exact function C(Q) and the fitted function 
Cf,(Q). b) The agreement between the exact current I @ ) ,  and the current 
generated by the fitted function Cf,(Q). 

6 Examples Using Real Data 
We will now give some examples of the performance of the algorithm on some 
real experimental data. All of our examples are from a single circuit that was 
initially charged up to different voltages. 

6.1 Experimental Data -200 Volts 
We now consider the performance of the algorithm on some experimental data. 
This particular set of data was believed to be fairly close to a linear regime 
of the circuit elements. Figure 19) shows the current distribution from some 
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Figure 15: This is the same example as in figure 14) except we have used a 
quintic polynomial in Q to fit F(Q*). 
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Figure 16: a) The exact current data for figure 14) with random noise added. 
b) The fit to the noisy data compared to the exact data. 
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Figure 17: This is the same example as in figures 14) and 15) except we have 
added noise to the current before we fit it. We are using a cubic polynomial in 
F(Q*) to fit the data. 
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Figure 18: This is the same example as in figure 4) except we have used a quintic 
polynomial in Q* to fit F(Q*). 
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real ring down data. We see that the data has a considerable amount of high 
frequency noise on it. Figure 19) also shows the smoothed approximation to the 
data. 

We begin by trying to fit this data assuming that R ,L and C are all constant. 
Figure 20a) shows the current distribution predicted by the values of R, L and C 
coming out of our algorithm. The fit to the experimental data is not bad. Figure 
20b) shows the curve fit to the experimental data that we get by assuming that 
R and L are linear functions of 12, and that F is a cubic function of Q". This 
gives us excellent agreement with the experimental data. Including higher order 
nonlnearities does not improve the fit to the data. 

Figure 21) shows the functions L , R and C obtained using our algorithm. 

Figure 19: This is an experimentally measured current distribution. We have 
multiplied the time by lo5 in order to better scale our equations. a) The original 
data. b) The smoothed data. 

6.2 Experimental Data - 500 Volts 
This set of experimental data uses the same circuit elements as in the last 
example, but is intitially charged up to a higher voltage. Figure 22a) shows the 
noisy experimental data, and figure 22b) shows the smoothed fit to this data. 
Figure 23a) shows the current distribution obtained by assuming that all of the 
circuits parameters R, L and C are constant. We see that we are not gettng as 
good a fit as we did in the last example because the circuit is in a regime where 
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Figure 20: This shows the numerically predicted current compared to the 
smoothed experimentally determined current. a) R, L and C assumed con- 
stant. b) R and L linear in 12, F a, cubic in &*. 

nonlinearities are more improtant. Figure 23b) shows the fit to the current 
distribution obtained by assuming that R and L are linear functions of I 2  and 
that F(Q*) is a cubic function of &*. 

6.3 Experimental Data- 1000 Volts 
This is the same as the previous two examples but the capacitor is initially 
charged to 1000 volts. Figure 25) shows the noisy data and our smoothed fit 
to it. Figure 26a) shows The fit to the data current when we assume constan 
values for R, L and C. Figure 26b) shows the fit to the current when we use 
lnear functions of I 2  for R and L, and a quintic function for F(Q*).  Figure 27) 
shows our prediction of the functions R, L ,  and C.  

6.4 Comparison of Different Experimental Shots 
The last three examples were all created using the same circuit. Each set of 
experiments determines the functions R(i), L ( I ) ,  and C ( Q )  on different inter- 
vals. Ther hihger the voltage is, the larger the interval is. We now compare 
the crcuit parameters predicted by the three different expeiments on the inter- 
vals determined by the data taken for the 200 Volt ring down. IN figures 29), 
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Figure 21: The predicted values of the resistance R ( I ) ,  the inductance L( I ) ,  
and the capacitance C(Q) for the experimentally determined current in figure 
19). 
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Figure 22: This is an experimentally measured current distribution. We have 
multiplied the time by lo5 in order to better scale our equations. a) The original 
data. b) The smoothed data. 

29), and 30) we show the functions C(Q),  R(I) ,  and L ( I )  predicted by each 
individual ring down experiment. We see that the results from each experiment 
predict functions that are not in exact agreement with each other, but that are 
realatively close to each other. 
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Figure 23: This shows the numerically predicted current compared to the 
smoothed experimentally determined current. a) R, L and C assumed con- 
stant. b) R and L linear in 12, F a cubic in &*. 

7 Appendix 
In this appendix we give some of the necessary formulas involving Tchebychev 
polynomials. We suppose we have a function f (t) that is represented in terms 
of shifted Tchebychev polynomials T{( t )  = Tk(2t/T - 1). 

N 

k=O 

We would like to express the the derivative and integral in terms of the 
functions T;k. In particular we write 

The coefficients c; are given by 
c; = 0 for all k 2 N .  The remaining coefficients are given by: 
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Figure 24: The predicted values of the resistance R ( I ) ,  the inductance L( I ) ,  
and the capacitance C(Q) for the experimentally determined current in figure 
22). 
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where 

Figure 25: This is an experimentally measured current distribution. We have 
multiplied the time by lo5 in order to better scale our equations. a) The original 
data. b) The smoothed data. 

and 

2 if k = 0, 
1 i f k 2 1 .  a k  = { 

The coefficients c k  are given by 

c 1  = 5 (co - - 
c2 2 1 
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Figure 26: This shows the numerically predicted current compared to the 
smoothed experimentally determined current. a) R, L and C assumed con- 
stant. b) R and L linear in 12, F a cubic in &*. 

This gives us our final special case: 

N+1 

co = (-1)k-lCk 
k = l  
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Figure 27: The predicted values of the resistance R ( I ) ,  the inductance L ( I ) ,  
and the capacitance C(Q) for the experimentally determined current in figure 
25). 
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Figure 28: This shows the function C(Q) predicted by the three different sets 
of ring down experiments. We only show the functions on the interval Q for the 
data obtained with 200V. a) 200 Volts b) 500 Volts ) c) 1000 Volts. 
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Figure 29: This shows the function R ( I )  predicted by the three different sets of 
ring down experiments. We only show the functions on the interval Q for the 
data obtained with 200V. a) 200 Volts b) 500 Volts ) c) 1000 Volts. 
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Figure 30: This shows the function R(I )  predicted by the three different sets of 
ring down experiments. We only show the functions on the interval Q for the 
data obtained with 200V. a) 200 Volts b) 500 Volts ) c) 1000 Volts. 
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